ndarray
)list
更快import numpy as np
import numpy
numpy.array([1,2,3])
array([1, 2, 3])
type(numpy.array([1,2,3]))
numpy.ndarray
import numpy as np
np.array([1,2,3])
array([1, 2, 3])
weather_array = numpy.array([ 'Taipei' , 18.5 , 'rainy' ])
print(weather_array)
['Taipei' '18.5' 'rainy']
ndarray
只接受同一種資料型態
list
轉為一個名為 Temperature_Taipei 的 ndarray
¶Taipei = [24,23,24,19,20,22,22]
Taipei = [24,23,24,19,20,22,22]
Temperature_Taipei = np.array(Taipei)
print(Temperature_Taipei)
print(type(Temperature_Taipei))
[24 23 24 19 20 22 22] <class 'numpy.ndarray'>
Temperature_Taipei.mean()
22.0
np.mean(Temperature_Taipei)
22.0
np.std(Temperature_Taipei)
1.7728105208558367
Keelung = [22, 20, 21, 18, 18, 19, 21]
Keelung = np.array([22,20,21,18,18,19,21])
print('Keelung 未來一週的平均溫度 : ',Keelung.mean())
Keelung 未來一週的平均溫度 : 19.8571428571
list
VS. ndarray
¶list
VS. ndarray
¶list
不能做逐項計算( element-wise )¶現在有一個未來一週 Taipei 的溫度( Temperature_Taipei ),希望可以將這些溫度從攝氏轉為華氏。
Temperature_Taipei = [22, 24, 19, 19, 30, 21, 25]
公式: $Fahrenheit = Celsius × (9/5) + 32$
list
VS. ndarray
¶list
不能做逐項計算( element-wise )¶Temperature_Taipei_Fahrenheit = (Temperature_Taipei)*(9/5)+32
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-15-c35a0006725f> in <module>() ----> 1 Temperature_Taipei_Fahrenheit = (Temperature_Taipei)*(9/5)+32 TypeError: can't multiply sequence by non-int of type 'float'
Temperature_Taipei_ndarray = np.array(Temperature_Taipei)
Temperature_Taipei_Fahrenheit = (Temperature_Taipei_ndarray)*(9/5)+32
print(Temperature_Taipei_Fahrenheit)
[ 71.6 75.2 66.2 66.2 86. 69.8 77. ]